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Abstract: - A novel non-linear signal prediction method is presented using non linear signal analysis and de-

terministic chaos techniques in combination with an improved local reconstruction methodology and multi-

layer neural networks for a diode resonator chaotic circuit generated time series forecasting. Multisim is used 

to simulate the circuit and show the presence of chaos as well as to generate the time series data. The Time se-

ries analysis is performed by the method proposed by Grasberger and Procaccia, involving estimation of the 

correlation and minimum embedding dimension as well as of the corresponding Kolmogorov entropy. These 

parameters are used to construct the preprocessing step of a first stage of a one step / multistep predictor. This 

first stage involves, in the sequel a local reconstruction based approach. More specifically, it is suggested that 

by extracting a class of informative features coming from second order information, involving the topology of 

their neighbouring state vectors, from the state vectors of the local reconstruction approach then, significantly 

better results could be obtained with respect to chaotic time series reconstruction. In the second stage of the 

proposed method a multilayer neural network, trained with the conjugate gradient algorithm, is employed in 

order to provide the proper topology preserving error characteristics for the associated time series prediction. 

One of the novelties of the proposed two stage predictor lies on that the ANN involved could be employed as 

second order predictors, that is as error predictors of the non-linear signal analysis based forecasted values. 

This novel two stage chaotic signal forecasting technique is evaluated through an extensive experimental 

study.  

 
Keywords:- time series forecasting, non-linear signal analysis, diode, chaos, time series, correlation dimension, 

prediction, error prediction, neural networks, local reconstruction, Backpropagation error 

 

1 Introduction 

Time series forecasting, or time series prediction, 

takes an existing series of data and forecasts the fu-

ture data values.  The goal is to observe or model the 

existing data series to enable future unknown data 

values to be forecasted accurately  

A novel two-stage time series prediction method is 

presented in this paper and is applied to the predic-

tion of a chaotic signal produced by a diode resonator 

chaotic circuit. This circuit, being quite simple, illus-

trates how chaos can be generated. We have selected 

Multisim [1] to simulate circuits since it provides an 

interface as close as possible to the real implementa-

tion environment. In addition, complete circuits im-

plementation and oscilloscope graphical plots are all 

presented. While non-linear signal analysis methods 

have been quite extensively studied and applied in 

several systems presenting chaos, chaotic time series 

prediction for electronic circuits is a field not too 

deeply investigated so far. Chaos has already been 

recognized to be present in electronic circuits [2]-[5]. 

Some preliminary investigations on such time series 

prediction have been performed by the authors in [6]. 

The present paper aims at developing efficient predic-

tors for such chaotic time series. To this end, the clas-

sical nonlinear signal analysis (i.e [7]-[8] ) has been 

involved as a first stage of the proposed predictor, 

while back-propagation neural networks have been 

employed in the second stage to enhance first stage 

results, being a second order predictor for the first 
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time in then relevant literature. An extensive experi-

mental study shows that the proposed predictor is 

very favourably evaluated in terms of accuracy with 

the classical nonlinear signal analysis methodology. 

2 The Non Autonomous Driven RL 

Diode Circuit 

A non autonomous chaotic circuit referred to as the 

driven RL-diode circuit (RLD) [2- 4] shown in Fig 1 
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Fig – 1 RL-Diode chaotic circuit 

 

It consists of a series connection of an ac-voltage 

source, a linear resistor R1, a linear inductor L1 and a 

diode D1 type 1N4001GP, that is the only nonlinear 

circuit element. An important feature of this circuit is 

that the current i (or the voltage across the resistor R) 

can be chaotic although the input voltage V1 is non-

chaotic. The usual procedure is to choose a parameter 

that strongly affects the system.  We found that for 

V1=30V RMS and input frequency f=130 KHz, in-

ductance L1=47mH, the response is a chaotic one. 

The results of the Multisim simulation are shown in 

Fig. 2. The RL-diode was implemented and the volt-

age oscillations across the resistor VR1 and its phase 

portrait V1 vs VR1 are shown in Fig.2 

 

 
Fig. 2   Time series VR1 (t) (left column) Phase portrait of 

V1versus VR1 (right column) 

3. The Proposed Novel Prediction 

Methodology  

3.1 First Stage Preprocessing: The Non Linear 

Signal Analysis Preprocessing of the State 

Vectors 

Time series prediction takes an existing series of data 

tttnt xxxx ,,,, 12 −−− K

      (1) 

and forecasts the future 

 
K,, 21 ++ tt xx

       (2)  

data values. Taking into account this point of view we 

could interpret the data produced by the RLD circuit 

as a non-linear chaotic time series. The goal is to ob-

serve or model the existing data series to enable fu-

ture unknown data values to be forecasted accurately. 

To evaluate the resulted time series, the method pro-

posed by Grasberger and Procaccia [7,8] and success-

fully applied in similar cases [9-11] has been applied 

in order to define the first stage of the proposed pre-

dictor. According to Takens theory [12] the measured 

time series were used to reconstruct the original 

phase space. For this purpose, we calculated the cor-

relation integral, for the simulated signal, defined by 

the following relation [13]. 
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for  lim r�∞  , where 

Ν…………………..is the number of points, 

Η……………………is the Heaviside function, 

m is the embedding dimension 

In the above equation  N is the number of the 

experemental points here N=16337, Xi is a point in 
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the m dimensional phase space  with Xi given by the  

following relation [12] 

 

Χι={VR1(ti),VR1(ti+τ),VR1(ti+2τ)….VR1(ti+(m-1)τ)} (4) 

 

The vector 

Χι={VR1(ti),VR1(ti+τ),VR1(ti+2τ)…..VR1(ti+(m-1)τ)}, 

represents a point  to the m dimensional phase space 

in which  the attractor is embedded each time,where τ 

is the time delay τ=i∆t determined by the first 

minimum of the time delayed mutual information ,I(τ) 

[13-16]. In our case, because of sample rate  

∆t=4.8x10-7 s, the mutual information function 

exhibits a local minimum at τ=6 time steps as shown 

at Fig -3. 
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Fig 3  Average Mutulal Information vs time delay τ 

 

We used this value for the reconstruction of phase 

space. With (3) dividing this space into hypercubes 

with a linear dimension r we count all points with 

mutual distance less than r. It has been proven  [7-8] 

that if our attractor is a strange one, the correlation 

integral is propotional to rν where v is a measure of 

the dimension of the attractor, called the correlation 

dimension. The correlation integral C(r) has been 

numerically calculated  as a function of r from 

formula (3), for embedding dimensions m=1..10. In  

Fig 4 (upper insert)  the slopes v of the lower linear 

parts of these double  logarithmic  curves give 

information characterizing the attractor 
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Fig 4 The correlation intergral C(r) vs logr, for different 

embedding dimensions m (upper insert). The corresponding 

slopes and the scaling region (lower  insert). 

 

In fig 4 (lower insert)  the corresponding average  

slopes v are given as a function of the embedding 

dimension m It is obvious from these curves  that v 

tends to saturate, for higher m’s , at non integer value 

v=2.11 with this value of v the minimum embedding 

dimension could be mmin=3  [13]. So the minimum 

embedding dimension of the attractor for one to one 

embedding is 3. 

In order to get more precise measurements of the 

strength of the chaos present in the oscillations we 

have introduced the Kolmogorov entropy. According 

to [13] the method described above also gives an es-

timate of the Kolmogorov entropy, i.e. the correlation 

integral C (r) scales with the embedding dimension m 

according to the following relation 

2~)(
Km

erC
τ−

    (5) 

 

Where K2 is a lower bound to the Kolomogorov en-

tropy. From the  plateau of fig 5 we estimate K2=0.11 

bit/s 
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Fig 5    The Kolmogorov entropy vs log r for different 

embedding dimensions  
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3.2 First stage Main Processing: The proposed 

Enhanced Local Reconstruction Methodology 

for Time Series Reconstruction and 

Forecasting 

In this paper we present a novel methodology to 

attempt predictions in chaotic time series based on 

the local modeling approach, known and mainly 

employed in chaotic time series forecasting [2], as 

discussed above. Several important modifications in 

the stages of the original local modeling   technique 

are suggested so as to improve its efficiency, 

involving a second order approach.  

First, concerning the stage of determining the 

components of the neighboring state vectors of the 

local modeling algorithm, we augment them by 

incorporating second order information embedded in 

these state vectors but not currently used. In the 

sequel, we use this second order information for 

forecasting prediction errors aiming at improving our 

predictions. 

More specifically, let us consider a time series x(t) 

with state vectors X(t) = (x_1(t), x_2(t), x_3(t),... 

x_n(t)) = (x(t), x(t-l), x(t-2l),... x(t-(n-1)l), where l is 

the delay time. Also, it is assumed that the 

dimensionality n is quite large, which is true 

especially for a chaotic time series where the minimal 

requirement is n >= D, with D its attractor dimension, 

discussed in the previous section. The next step is to 

assume a functional relationship between the current 

state vector X(t) and the future one X(t+T), X(t+T) = 

f_T(X(t)). The problem is to find a predictor F_T 

approximating f_T. The local approximation 

methodology is one of the most effective approaches 

for solving it by involving nearby only states to make 

predictions. To predict x(t+T) we first impose a 

metric on the state space, denoted by || ||, and find the 

k nearest neighbors of X(t), i.e., the k states X(t') with 

t' < t that minimize ||X(t)-X(t')||. The most widely 

accepted such metric is the known Euclidean 

distance. This is the first stage of the algorithm. 

Although this original approach seems natural, 

however, the state vectors include second order 

information that is not exploited so far.  

To be more precise, each state vector X(t) along with 

its k nearest neighbors X(t') form a group with a 

representative autocorrelation matrix which expresses 

second order characteristics of these state vectors. It 

is well known that such an autocorrelation matrix is 

formed by involving the following known 

relationship. 
 

R(X(t), X(t(1)), X(t(2)),…… X(t(k))) = (1/(k+1)) 

(∑X(t(J)) XTranspose(t(J))),                  (6) 
 

where J=0, 1, 2, …k, that is, the summation includes 

the current state vector X(t(0)) = X(t),  as well as its k 

nearest neighbors. Finally, XTranspose(t(J)) is the 

transpose matrix of the J neighbor state vector X(t(J)) 

of the current one.  

Therefore, if for each state vector X(t) of the time 

series its corresponding autocorrelation matrix 

R(X(t)) is derived from its associated k nearest 

neighbors X(t(J)) then, we could have a quantitative 

statistical description of the second order properties 

of this state vector, that is of the relations between its 

components. By applying Principal Component 

Analysis to these autocorrelation matrices their 

eigenvectors er, for r = 1,2,…n (dimension of current 

state vector X(t)), can be extracted. Since, as it is well 

known from signal processing theory, the 

eigenvectors corresponding to the largest eigenvalues 

might be associated with the time series inherent 

noise, only the p eigenvectors corresponding to the 

average in magnitude eigenvalues are kept in the 

following steps of the suggested procedure. These p 

eigenvectors are used to provide additional 

informative components to their associated state 

vector X(t) and thus, form the new augmented state 

vector X'(t). 

More specifically, the informative features these 

eigenvectors provide to their corresponding state 

vector X(t) are simply the cosines of their angles with 

the vector X(t). Therefore, m additional such 

components are incorporated into each state vector 

X(t), conveying a kind of second order information 

about X(t) neighborhood. 

The above discussion leads to the definition of the 

augmented state vectors X'(t) and the second order 

vectors X' ' (t) as follows, 

X'(t) = [ X(t), <X(t), e1>/(||X(t)||*|| e1||),… <X(t), 

er>/(||X(t)||*|| er||), …<X(t), ep/(||X(t)||*|| ep||)] 

X' ' (t) = [ <X(t), e1>/(||X(t)||*|| e1||),… <X(t), 

er>/(||X(t)||*|| er||), …<X(t), ep/(||X(t)||*|| ep||)]          (7) 

 

 

This second vector X' ' (t), defined completely above, 

will serve as input to the Neural Networks of the sec-

ond stage in the next section, as second order error 

predictors. 

WSEAS TRANSACTIONS on SIGNAL PROCESSING D. A. Karras, M. P. Hanias

E-ISSN: 2224-3488 232 Volume 12, 2016



In the previous definitions, r=1,2,…p are the above 

reported p eigenvectors having average in magnitude 

eigenvalues. The parameter p is a user defined 

parameter and depends on the dimension n of the 

current state vector X(t).  In the experiments involved 

in the next section we always consider p=n/3.  

The above specified second order feature extraction 

based on the local construction methodology will be 

applied in the next section for the chaotic time series 

forecasting as a second order error prediction 

approach. 

3.3 Second Stage: Back-Propagation ANNs as 

Second Order Error Predictors 

Based on the above stage, the proposed novel algo-

rithm to enhance non-linear signal analysis prediction 

is as follows: 

 

1. To predict point Vi+1, we determine the last 

known state of the system as represented by 

vector X = [Vi, Vi-τ, Vi-2τ, Vi-(m-1)τ], 

where m is the embedding dimension and τ is 

the time delay. 

 

2. With optimum values of delay time and em-

bedding dimension m we then search the time 

series to find k similar states that have oc-

curred in the past, where “similarity” is de-

termined by evaluating the distance between 

vector X and its neighbour vector X' in the m-

dimensional state space. So k close states 

(usually nearest neighbours of X) of the sys-

tem that have occurred in the past are found, 

by computing their distances from X.  

 

3. We used a fixed size of nearest neighbours K 

(calculated for optimizing prediction perfor-

mance in the training phase).  if a state X'= 

[V'i, V'i-τ, V'i-2τd, V'i-(m-1)τ] in the neigh-

bourhood of X resulted in the observation 

V'i+1 in the past, then the point Vi+1 which 

we want to predict must be somewhere near 

V'i+1.  This is the main concept of nonlinear 

signal analysis of first order approximation.  

 

4. It is reasonable to calculate Vi+1 = (Σqk V’k)/ 

Σqk , where qk the distance between current 

state X and neighboring state X’k, whereas 

V’k the corresponding prediction from X’k 

vector (from the training set). The above sum 

is considered for all neighbors of X. 

 

5. Our proposition to enhance prediction results 

is to write down Vi+1 = (Σqk V’k)/ Σqk + er-

ror_Vi+1, where (Σqk V’k)/ Σqk is the first or-

der prediction and error_Vi+1, is the predic-

tion error to be minimized provided it is cal-

culated properly. Therefore, it is a second or-

der approximation proposal to predict such an 

error. This error_Vi+1, could be calculated 

through a suitable neural network as an error 

predictor [18]. This is precisely the main 

concept of the proposed novel methodology, 

which is based on the remarks of the previous 

section involving a second order feature ex-

traction methodology using the local con-

struction approach. 

 

6. Suppose err_k the corresponding prediction 

error measured through the above procedure 

for each neighboring state X’k of given cur-

rent state X above (out of the K neighbours 

of X). This err_k is known through the train-

ing set, since for each X’k in the training set 

we can calculate its corresponding K neigh-

bours from the training set, and then, esti-

mate, using step 5 above, the associated 

err_k. It could be reasonably considered, 

then, that this err_k prediction error has a 

strong correlation with the second order in-

formation outlined in the equations (7) of the 

previous section. This approach improves 

considerations and results of a preliminary at-

tempt of the same authors for the same prob-

lem [19,20]. In that work, another approach 

was considered for the second order predic-

tor. Namely, for each k state vector of the 

training set we had constructed all K such 

err_k. More specifically, each w of the K 

neighbours of the k state vector Xk is associ-

ated with an error_k , let’s say w_error_k. If 

we consider these K values for the relevant 

w_error_k error values corresponding to the 

Vi+1 prediction of step 4 above, then, we form 

an input vector of K inputs. In the sequel, in 

[19,20] we fed these K values as inputs to a 

back-propagation neural network of K-L1-

L2-1 architecture. It was reasonable to say 

that these K relevant w_error_k error values 

where somehow associated with the sought 

prediction error error_k. In the present herein 

approach we formulate an input vector of the 

p second order characteristics of the previous 

section. These features could be directly con-

sidered second order since they reveal special 

topology characteristics of the K neighbour-
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ing state vectors corresponding to the state 

vector Xk. On the other hand, the previous  

works [19,20] based K relevant w_error_k er-

ror values were indirectly associated with the 

second order characteristics of the considered 

state vectors. Such a more direct association 

might be beneficial for the problem at hand. 

Therefore, we herein consider a K*p-L3-L4-1 

Backprogation error ANN architecture. That 

is, for each k state vector Xk we find its K 

neighbours, state vectors X’kw, where 

w=1..K. For each X’kw its associated p mid 

value eigenvector characteristics, of section 

3.2, are extracted. In order to analyse the 

space of each X’kw    we have considered only 

its two closest nearest neighbouring state vec-

tors, where K>2. Therefore, a set of p*K val-

ues have been extracted following this proce-

dure. This K*p-L3-L4-1 Backprogation error 

ANN network has been trained with the con-

jugate gradient algorithm, due to the large 

training set, since it is known to be the best 

algorithm for large data sets and ANN archi-

tectures [18], should be able to predict state’s 

X error error_Vi+1.  

 

7. The training set needed for step 6 is con-

structed for each state X of the training set by 

estimating all corresponding p*K second or-

der features, outlined in section 3.2 and in 

step 6 above, of its K neighbours and its as-

sociated error_Vi+1 , which of course serves 

as the desired output of the corresponding 

p*K values input pattern 

 

4. Experimental Study 

 

We have used a simulated time series from RLD  cir-

cuit with V1=30V RMS and input frequency f=130 

KHz and we predict the voltage V across the resistor. 

We use locally linear models to predict the one step 

and the multistep procedures. That is, instead of fit-

ting one complex model with many coefficients to the 

entire data set, we fit many simple models (low order 

polynomials) to small portion of the data set depend-

ing on the geometry of the local neighborhood of the 

dynamical system [17]. The general procedure is the 

following: To predict point Vi+1, we determine the last 

known state of the system as represented by vector X 

= [Vi, Vi-τ, Vi-2τ, Vi-(m-1)τ], where m is the embedding 

dimension and τ is the time delay. 
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Fig 6   One step prediction 
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Fig 7 Mean squared error of our predictor normal-

ized by the mean squared error of the random walk 

predictor for one step prediction 

 

 

So we use as a delay time the value of τ=6 as before. 

From previous analysis the correlation dimension for 

RLD circuit is found v=2.11.  With optimum values 

of delay time and embedding dimension m=3 we then 

search the time series to find k similar states that have 

occurred in the past, where “similarity” is determined 

by evaluating the distance between vector X and its 

neighbour vector X' in the m-dimensional state space. 

So k close states (usually nearest neighbours of X) of 

the system that have occurred in the past are found, 

by computing their distances from X as explained in 

section 3 above 

The idea is to fit a map which extrapolates X and its k 

nearest neighbours to determine the next value.  If the 

observable signal was generated by some determinis-

tic map M(Vi,Vi-τ, Vi-2τ, V(i-(m-1)τ) = Vi+τ, that map can 

be recovered (reconstructed) from the data by looking 

at its behaviour in the neighbourhood of X. Using this 

map, an approximate value of Vi+1 can be obtained. 

We used a fixed size of nearest neighbours k=36. Al-

so, concerning the second order procedure outlined in 
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section 3, p=3. Now we can use this map to predict 

Vi+1 In other words, we make an assumption that M is 

fairly smooth around X, and so if a state X'= [V'i, V'i-

τ, V'i-2τd, V'i-(m-1)τ] in the neighbourhood of X resulted 

in the observation V'i+1 in the past, then the point Vi+1 

which we want to predict must be somewhere near 

V'i+1.  [17]. We have employed both the one step and 

multistep ahead prediction methods. In the one step 

ahead prediction, after each step in the future is pre-

dicted, the actual value is utilized for the next one –

step prediction. In contrast, the multistep prediction is 

based only on the initial k states. 

The calculated performance is otherwise known as 

the Normalized Mean Squared Error (NMSE) is cal-

culated by (5-1), 
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(5-1),  

where iV
~

 is the predicted value, Vi, the actual value, 

V is the average actual value, and NP is the range of 

values in the prediction interval. 

From (5-1), it can be seen that NMSE is the mean 

squared error of our predictor normalized by the 

mean squared error a random walk predictor. By def-

inition, the minimum value of NMSE is 0. At that 

value, there is the exact match between the actual and 

predicted values. The higher NMSE, the worse is our 

prediction as compared to the trivial predictors. If 

NMSE is equal to 1, our prediction is as good as the 

prediction by the trivial predictor. If NMSE is greater 

than 1, our prediction worsens. With values of τ=6, 

m=3 we achieved the minimum NMSE.  

 

The second stage back-propagation ANN trained with 

conjugate gradient technique is of a 3*36-64-64-1 = 

108-64-64-1 architecture [18]. 

 

We used 14700 data points and predicted the evolu-

tion for 889 succeeding dimensionless time steps. 

The results are shown at fig 6 where the one step 

ahead predicted values are coming from prediction 

out-of-sample set, where we pretend that we know the 

data only up until this point, and we try to predict 

from there, while the one step ahead predicted values 

are coming from prediction out-of-sample set. The 

NMSE is shown at fig 7 for the one step prediction.  

We use the same procedure as before but with multi-

step ahead predictions. The results are shown at Fig - 

8 The NMSE is shown at Fig - 9 for the multi step 

prediction  
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Fig 8 Multistep prediction, Actual and predicted time series 

for 10 time steps ahead for the total set of points and the 

unknown time series (lower insert, in detail) 

 

 

14680 14700 14720 14740 14760 14780 14800 14820 14840 14860

0.00

0.02

0.04

0.06

0.08

0.10

N
M

S
E

Time steps

NMSE for multistep prediction

 
Fig 9 Mean squared error of our predictor normalized by 

the mean squared error of the random walk predictor for 

multistep prediction 
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In comparison, when a first stage only predictor is 

used without the proposed neural network of stage 2, 

on average, for the 889 unknown data points we have 

achieved 6.3% worse performance in the one-step 

prediction for the NMSE and 5.8% worse perfor-

mance in the multistep prediction experiments. In the 

same experiments, performed in the previous ap-

proach of the same authors [19], there has been 

achieved more than 2% improvement concerning the 

1-step prediction and 2.5% improvement concerning 

the multistep prediction performance. Therefore, this 

new proposed methodology is worth evaluating it fur-

ther in much larger scale experiments. 

5. Conclusions and Future Trends 

 

We have proposed a novel two-stage chaotic time se-

ries prediction scheme based on nonlinear signal 

analysis methods an improved second order based lo-

cal reconstruction methodology and a novel error 

prediction back propagation ANN trained with the 

conjugate gradient algorithm. Applying the methods 

of non linear analysis in the time series produced by 

the chaotic simple RLD circuit we found that the 

strange attractor that governs the phenomenon is a 

Lorenz type attractor with a correlation dimension 

v=2.11 who is stretching and folding in a three di-

mensions phase space. This is also evident from the 

one step ahead and multistep successful predictions 

with the use of the correspondence strange attractor 

invariants as input parameters, and the efficient ANN 

model introduced in the second stage of the proposed 

forecasting system. 

 We believe that for a detailed understanding of chaos 

in the RLD circuits these results must be combined 

with the reverse-recovery effect and all of its nonlin-

earities. The proposed two stage local reconstruction 

based improved prediction methodology might be ap-

plied successfully in other chaotic and non-chaotic 

time series too, since it is quite general. This remains, 

also, a future target of the authors. 
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